
Energy-Efficient Data Collection in Robotic Sensor
Networks

Christopher Beauchamp, Soham Patil, Bin Tang
Department of Computer Science, California State University Dominguez Hills

{cbeauchamp2,spatil1}@toromail.csudh.edu, btang@csudh.edu

Abstract—We study how to collect data efficiently in robotic
sensor networks (RSNs) and propose a new algorithmic frame-
work called budget-constrained covering salesman problem (i.e.,
BC-CSP). Given an RSN graph wherein sensor nodes have data
of different values and a robot (i.e., salesman) with limited battery
power (i.e., budget), the goal of the BC-CSP is to find a data-
covering tour for the robot to collect data with the maximum
sum of values before running out of battery and returning to the
depot. We propose a suite of algorithmic solutions to solve the BC-
CSP, including Integer Linear programming (ILP), Greedy, and
Random algorithms. Using commonly adopted mobility models of
the robots and realistic battery power measurements from robotic
applications, we show that a) Greedy performs very close to ILP,
collecting the number of packets within 4.3% to 14.2% of ILP,
and b) Greedy significantly outperforms Random by collecting
between 41.9% and 80.1% more packets.

Keywords – robotic sensor networks, budget-constrained
covering salesman problem, algorithms.

I. INTRODUCTION

Background and Motivation. Robotic sensor networks (RSNs)
are wireless sensor networks consisting of static sensors and
mobile robots that collectively perform sensing, communica-
tion, and actuation in physical environments [6], [10]. RSNs
significantly enhance our ability to monitor and interact with
the physical world. The wide range of land applications
of the RSN include industry automation [13], security and
intrusion detection [17], [18], and environmental monitoring
and disaster relief [20].

For robots to operate at the above large-scale sensing appli-
cations, they must be untethered and powered by rechargeable
batteries. A vital performance measurement of a modern
rechargeable battery is its energy density, the amount of energy
it can store with a given weight or volume [8]. Although
various efforts have been proposed to increase the energy
density of Li-ion batteries [12], one of the most popular
commercial energy sources, Hecht et al. [8] point out that
with its current energy density value of 250 Wh/kg, the Li-
ion battery is too hefty for a mobile robot to move around even
for a couple of hours. To make it worse, the current density
value is fast approaching its fundamental limit, making further
improvement difficult, if not impossible [8].

Research Question. Therefore, it could happen that the robot
does not have enough battery power to visit all parts of the
sensing area in an RSN application. This is especially true for
many large-scale sensing applications such as disaster relief
and underwater exploration, wherein robots are dispatched into

a vast area for a relatively long period (e.g., one day). In this
paper, we specifically focus on a robot’s limited battery power
and a following question: how to find a path for a battery-
constrained robot to maximize its data-collection performance
in a large-scale RSN application?

Our Contributions. In our RSN model, the sensor nodes have
already generated various data packets from the environment.
We use the number of data packets to indicate the value of
information available at a node (thus the importance of visiting
this node by the robot). A robot with limited battery power
is dispatched from a depot of the RSN into the network to
collect those data packets. The depot consists of a base station,
wherein the data brought back by the robot can be uploaded for
further analysis and actuation, and a charging station, wherein
the robot can be fully recharged. The robot collects the data
packets wirelessly from the sensor nodes it visits and from all
the sensor nodes within its wireless data-collecting range. We
say the robot covers the sensor nodes from which it collects
packets. The goal is for the robot to visit a sequence of sensor
nodes (referred to as a data-covering route) to collect as many
data packets as possible before it runs out of battery power
and returns to the depot, where the robot uploads its collected
data packets and fully recharge its battery power. We refer to
this problem as data collection in RSNs (DCR).

Underlying DCR is a new graph-theoretical problem, which
we call budget-constrained covering salesman problem (i.e.,
BC-CSP). Given a graph wherein each node has a prize,
each edge has a cost, and a salesman with a limited budget,
the BC-CSP aims to find a Hamiltonian covering tour that
collects the maximum amount of prizes within the budget.
Here, “covering” means that the salesman collects prizes from
the nodes he visits and those within some distance from a
visited node. To the extent of our knowledge, BC-CSP has
not been identified and solved by the network community.

We design a suite of algorithms, including optimal integer
linear programming (ILP) and heuristic greedy and random
algorithms to solve the BC-CSP. Using commonly adopted
mobility models of the robots and realistic battery power
measurements ot robots, we show that a) greedy performs very
close to ILP, collecting the number of packets within 4.3% to
14.2% of ILP, and b) greedy significantly outperforms random
by collecting between 41.9% and 80.1% more packets.

Related Work. Extensive research has achieved various data
collection objectives in the RSN [11]. One group aims to op-



timize resource provisioning objectives of data collection [15],
[16], [7], such as minimizing the delay or energy consumption
of the data-covering tour or maximizing the network lifetime.
The other group achieves admission control objectives [4],
[3], [19], which requires retrieving data within a deadline or
time duration. However, they all assume that the robot has
enough battery power to visit any part of the RSN. Some
RSN applications have emerged recently, utilizing UAVs or
drones [22], [14]. Although the limited flight time of the
drones due to limited battery power is implied in the research,
no one explicitly addresses the challenges that limited battery
power brings to the RSN.

II. PROBLEM FORMULATION OF DCR

System Model. We model the RSN as an area of len meter ×
wid meter, where n sensor nodes Vs = {1, 2, ..., n} are
randomly placed inside the RSN. Sensor node i ∈ Vs is located
at (xi, yi), 0 ≤ xi ≤ len, 0 ≤ yi ≤ wid, and it has generated
di > 0 data packets, each is of b-bit. A depot, denoted as
s = (0, 0), is located at one corner of the RSN. The depot has
the functions of both a base station for the robot to upload its
collected packets and a charging station to charge the robot
when it returns from its data-collecting trip. Let c(i, j) denote
the Euclidean distance between i, j ∈ V , where V = Vs∪{s};
c(i, j) =

√
(xi − xj)2 + (yi − yj)2. We assume the robot has

a wireless sensing range of Tr; that is, the robot can sense and
collect packets from any sensor nodes within Tr distance. We
refer to Tr as the robot’s data-covering range.

Mobility Graph and Data Collection Graph. There are two
different graphs for the RSN. First, the robot’s movement
can be characterized by a complete graph G(V,E), where the
weight w(i, j) of any edge (i, j) ∈ E is c(i, j)×µ, the robot’s
mobility energy consumption moving from i to j. We refer to
this complete graph as the mobility graph of the RSN. On the
other hand, the robot’s data-collecting behavior is modeled by
a data collection graph G1(V,E1), where an edge (i, j) ∈ E1

if c(i, j) ≤ Tr, ∀i, j ∈ V . For any node i ∈ V , denote i’s 1-
covered nodes as N1

i = {j|(i, j) ∈ E1}. When the robot visits
i, it collects packets from i and all its 1-covered nodes N1

i

(if there are any). We say that both node i and its 1-covered
nodes N1

i are covered by the robot. Note that G1 is a subgraph
of G, as E1 ⊆ E. We thus use the mobility graph G as the
input graph for the DCR.

Energy Model. There are two primary components of a robot’s
energy consumption during its data-collecting process [21].
One is its mobility energy, the energy associated with the
robot’s movement that overcomes the friction between its
wheels and the terrain. The maximum distance a wheeled
robot of battery power E can move is d = E

w×Ccrr
[21]. Here,

Ccrr is the rolling friction coefficient of the terrain, and w is
the robot’s weight. We define a robot’s mobility coefficient as
the battery power consumed per unit of traveled distance and
denote it as µ; µ = w×Ccrr. For a robot to move l meters, its
mobility energy consumption, denoted as Em, is Em = µ× l.

The other component is robotics energy Ec, which powers
the robot’s sensing, computing, and communication capabil-
ities. In data collection, Ec is mainly the robot’s wireless
energy consumption when sensing and collecting data packets
from sensor nodes. For a robot to collect a data packet of b-
bit within Tr distance, its robotics energy Ec = ϵe · b, where
ϵe = 100nJ/bit is the energy consumption per bit on the circuit
hardware of the robot [9].

Problem Formulation of DCR. Given the mobility graph G, let
R = {s, t1, t2, ..., ta, s} be a data-covering tour of the robot,
where the robot starts from depot s, visits a sequence of a
distinct sensor nodes tj ∈ Vs, 1 ≤ j ≤ a, 1 ≤ a ≤ n, to
collect the data packets from tj and its 1-covered nodes, and
returns at depot s before running out of battery. The mobility
energy of the robot along R is thus Em = µ ×

(
c(s, t1) +∑a−1

i=1 c(ti, ti+1) + c(ta, s)
)
. Let NR =

⋃a
j=1 N

1
tj denote all

the sensor nodes that are 1-covered by at least one node in
R. Denote the total number of data packets the robot collects
when moving along R as DR; DR =

∑
j∈R∪NR

dj · b. Thus
the robotics energy of the robot is Ec = ϵe ∗ DR. Denote
the total battery power spent by the robot along R as ER;
ER = Em + Ec. Given the initial battery power E of the
robot, the goal of the DCR is to find the robot an optimal
data-covering tour R to maximize DR while ER ≤ E .

EXAMPLE 1: Fig. 1 shows a small RSN with nine nodes,
wherein node G is the depot and other nodes are sensor nodes
(we use the grid network only for illustration purposes). For
clarity, we only show the data collection graph, and each
sensor node has one data packet available; the weight of each
edge is one unit (i.e., the mobility energy of the robot on each
edge is one unit). The robot’s initial battery power E = 4.

Given this battery constraint, there are several feasible data-
covering tours for the robot. They include a) G-H-E-D-G
(solid blue lines) b) G-H-I-H-G (dashed blue lines), and c)
G-D-A-D-G (dashed blue lines). Tour a) collects a maximum
of 7 data packets while tours b) and c) each collect 5 data
packets, all giving the robot a remaining battery power of zero
when it returns to G. Another group of feasible tours involves
the robot moving directly between G and E; however, none is
optimal. For example, G-E-H-G collects 6 data packets, with
a remaining energy of 2−

√
2 for the robot. □

A

D
E

B

G H

C

F

I

:depot :sensor

Fig. 1. An example for DCR.

BC-CSP. Given a complete graph
G′(V ′, E′) where a node i ∈
V ′ has a prize pi ≥ 0 and an
edge (u, v) ∈ E′ has a weight
w(u, v) ≥ 0. Each node i ∈ V ′

can cover a subset set of nodes
Si ⊂ V ′, referring to i’s covering
set. A traveling salesman is lo-
cated at r ∈ V ′ and has a budget
of B, the maximum distance he
can travel before returning to r.
When the salesman visits a node i, he can collect prizes from i
and all nodes in Si (if they are still available). We assume each
prize can be collected at most once. Given a prize-covering



cycle R = {r = v1, v2, v3, ..., vx = r} of the salesman, the
total prize it collects is PR =

∑
i∈R∪{j|j∈Si∧i∈R} pi and the

cost along R as CR =
∑x−1

i=1 w(vi, vi+1). The BC-CSP aims
to find a R to maximize PR under the budget constraint that
CR ≤ B. BC-CSP is NP-hard as its special case of CSP, where
B = +∞, is NP-hard [5]. We give the theorem below without
proof due to space constraints.

Theorem 1: DCR on the mobility graph G(V,E) is a BC-
CSP on G′(V ′, E′).

III. AN OPTIMAL ILP ALGORITHM

We formulate DCR as an ILP, as shown in ILP (A). We
introduce four decision variables: xi,j indicating if edge (i, j)
is on the data-covering tour of the robot; yi indicating if node
i is visited by the robot (i.e., on the data-covering tour); zi
indicating if node i’s data packets are collected by the robot
(i.e., i is either visited by the robot or 1-covered by a node
visited by the robot). Finally, ui is a position variable showing
the order in which the node i is visited. us = 1 as s, being
the depot, are both starting and ending nodes.

(A) max
∑
j∈Vs

di · zi (1)

s.t.
xi,j , yi, zi ∈ {0, 1}, ∀i, j ∈ V (2)∑
j∈Vs

xs,j =
∑
i∈Vs

xi,s = 1 (3)∑
j∈V

xi,j =
∑
j∈V

xj,i = yi ≤ 1, ∀i ∈ Vs (4)∑
i∈V

∑
j∈V

(di,j · xi,j · µ) ≤ E , (5)

zi ≥ yi +
∑

j:c(i,j)≤Tr

yj , ∀i ∈ Vs (6)

2 ≤ ui ≤ n, ∀i ∈ Vs (7)
ui − uj + 1 ≤ n · (1− xi,j). ∀i, j ∈ Vs (8)

Objective function 1 is to maximize the total number of
data packets collected from all the sensor nodes covered by
the robot. Constraint 2 shows the integer constraints of xi,j ,
yi, and zi. Constraint 3 ensures that the data-covering tour
starts from and ends at depot s. Constraint 4 ensures that
each sensor node in Vs is visited by the robot at most once.
Constraint 5 enforces the battery power constraint of the robot.
Constraint 6 is the covering constraint, indicating that if a node
is visited or within Tr of any visited node, it is covered by
the robot, and the robot collects its packets. Constraints 7 and
8 are Miller–Tucker–Zemlin (MTZ) formulation for subtour
elimination [2] that guarantee the final data-covering tour is
one tour instead of multiple tours.

IV. GREEDY DATA-COVERING ALGORITHMS

As the above ILP(A) is time-consuming to compute, we
present two efficient and easy-to-implement greedy algo-
rithms: the prize-based covering greedy algorithm (Algo. 1)

and a random covering algorithm. We give definitions that are
conducive to the design of Algo. 1 below.

Definition 1: (Battery-Feasible Sensor Nodes.) Given that
the robot is currently located at node i ∈ V and with battery
B, the set of sensor nodes U that have not been visited by the
robot, its battery-feasible sensor nodes, denoted as F(i, B, U),
is the set of sensor nodes that the robot has not visited and
that it has sufficient battery to travel to and then return to s.
F(i, B) = {j|

(
c(i, j) + c(j, s)

)
× µ ≤ B ∧ j ∈ Vs ∧ U}. □

Definition 2: (Prize at a Sensor Node.) Given a sensor
node i ∈ Vs, its available prize, denoted as pi, is all the data
packets that can be collected by the robot when it visits i. I.e.,
pi =

∑
j∈Ni∪{i} d

c
j , where Ni is i’s 1-covered nodes, and dcj

is the current number of data packets available at j. Initially,
dcj = dj , and it becomes 0 when the robot collects j’s packets.
We denote a node i’s initial prize as poi =

∑
j∈Ni∪{i} dj . □

Definition 3: (Covered Prize-Cost Ratio of a Battery-
Feasible Sensor Node.) Given the robot’s current location i,
for a battery-feasible node k ∈ F(i, B, U), its covered prize-
cost ratio, denoted as pcr(i, k), is the ratio between the prize
available at k and the battery consumption of the robot moving
from i to k. That is, pcr(i, k) = pk

c(i,k)×µ . □
Definition 4: (2-Covered Nodes.) Given a sensor node j,

its 2-covered nodes are the 1-covered nodes of any 1-covered
node of j that are not 1-covered nodes of j, denoted as N2

j .
That is, N2

j = {i|i ∈ N1
k ∧ k ∈ N1

j ∧ i /∈ N1
j }. □

Greedy Algorithm. Algo. 1 works as follows. First, all vari-
ables related to the robot’s data-covering tour are initialized
(line 1). It computes the initial prizes of all sensor nodes (lines
2-5) and then takes place in rounds. In each round, located at
current node i, the robot visits a battery-feasible node j with
the largest covered prize-cost ratio and updates all the route-
related information (lines 7-10). It then collects j’s prize pj by
collecting packets from j and its 1-covered nodes and prizes
of all the sensor nodes involved (lines 11-31), illustrated next.
This continues until it can no longer find a battery-feasible
node, at which point it returns to s and outputs the data-
covering tour, the collected packets, and the energy cost of
the robot on this route (lines 34-35). In Algo. 1, the robot
visits at most n = |Vs| nodes. At each node j, it updates the
prizes by checking all of its 1-covered and 2-covered nodes,
which is O(n2). Its time complexity is O(n3).

Prize-Updating. When the robot visits sensor node j, the data-
collecting and prize-updating process takes place in two steps.
First, it updates pj to be zero, as all the packets from j and
its 1-covered nodes k ∈ Nj (if there are any) will be collected
(lines 12 - 20). Note we also update pk if node k has packets,
as the robot will collect them in this round (lines 17-19).
Meanwhile, Aj records all the sensor nodes whose packets
are collected by the robot when it visits j.

Second, we further update the prizes of node k and k’s 1-
covered nodes l ∈ Nk (lines 21-31). There are two cases. The
first case is that l’s packets are collected in this round (i.e.,
l ∈ Aj). In this case, it must be that l ∈ N1

j , as shown in
Fig. 2(a). We thus update k’s prize as pk = pk − dl (lines



Algorithm 1 Greedy Covering Algorithm.
Input: A mobility graph G(V,E), di, Tr, µ, E , and depot s,
Output: A data-covering tour R, PR, and CR.
Notations: R: the data-covering tour, starting from s;

CR: the energy cost of the robot on R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited sensor nodes, initially Vs;
i: the node where the robot is located currently;
Aj : nodes whose packets are collected when j is visited;
B: current battery power of the robot, initially E ;

1: i = s, R = {s}, CR = PR = 0, U = Vs, B = E ;
2: for (each i ∈ Vs) do
3: N1

i = {j|j ∈ Vs ∧ c(i, j) ≤ Tr ∧ j ̸= i};
4: pi = p0i =

∑
j∈N1

i ∪{i} dj ;
5: end for

// if there are still battery-feasible nodes for the robot
6: while (F(i, B, U) ̸= ϕ) do
7: j = argmaxk∈F (i,B,U)pcr(i, k);
8: R = R ∪ {j}, PR = PR + pj ;
9: CR = CR + c(i, j)× µ;

10: B = B − c(i, j)× µ, U = U − {j};
11: Aj = ϕ (empty set), pj = 0;
12: if (dj ̸= 0) then
13: dj = 0;
14: Aj = {j};
15: end if
16: for (each k ∈ N1

j ) do
17: if (dk ̸= 0) then
18: pk = pk − dk, dk = 0; Aj = Aj ∪ {k};
19: end if
20: end for
21: for (each k ∈ N1

j ) do
22: for (each l ∈ N1

k ) do
23: if (l ∈ Aj) then
24: pk = pk − dl;
25: else
26: if (l ∈ N2

j ∧ k ∈ Aj) then
27: pl = pl − dk;
28: end if
29: end if
30: end for
31: end for
32: i = j;
33: end while
34: R = R ∪ {s}, CR = CR + c(i, s)× µ;
35: return R, PR, CR.

23-24). The second case is that l’s packets are not collected
in this round, which is further divided into two subcases. One
subcase is that l is j’s 1-covered node. As its packets were not
collected by the robot in this round, it means its packets had
been collected in a previous round, and thus, nothing needs to
be updated. The other subcase is that l is j’s 2-covered node
(i.e., l ∈ N2

j ), as shown in Fig. 2(b), then we need to check

j k

l

(a)

Tr
Tr j k

l
Tr

Tr

(b)
Fig. 2. Prize-updating when node j is visited, where k is j’s 1-covered node.
(a) l is a 1-covered node of both j and k. (b) l is k’s 1-covered node and j’s
2-covered node.

(a) Collected Packets. (b) Traveled Distance.

Fig. 3. Comparing Greedy, Random, and ILP small-scale RSNs.

if k ∈ Aj (i.e., if k’s packets are collected in this round). If
so, we update l’s prize as pl = pl − dk (lines 26-28).

Random Covering Algorithm. We propose a random cover-
ing algorithm. The only difference between Greedy and PCA
is line 7 in Algo. 1, wherein the greedy algorithm chooses
a feasible node with the largest prize-cost ratio to move to,
while in random, it instead randomly chooses one.

V. PERFORMANCE EVALUATION

We compare ILP(A) (ILP), greedy algorithm viz. Algo. 1
(Greedy), and random algorithm (Random). We use
CPLEX [1] for ILP computation.

Experiment Setup. We use small RSNs of 1000m × 1000m,
where 20 sensor nodes are randomly placed when the ILP
optimal solutions are computed, and large RSNs of 10, 000m×
10, 000m, where 100 sensor nodes are randomly placed. In
either case, the depot s is at (0, 0) of the BSN. Each
sensor generates a random number of data packets in [0,
100], each of 1024B. We set the mobility energy coefficient
µ as 100 Joules/m following [21]. Each data point in our
plots is an average of ten runs, for which a different RSN
instance is constructed and applied to all the algorithms for fair
comparison. The error bars indicate 95% confidence intervals.
We write our simulator in Java on Windows 11 with AMD
Ryzen 5 4000 Series 6-Core and 24GB of DDR4 Memory.

Comparison in Small RSNs. Fig. 3 compares the three
algorithms in small RSNs with the initial battery E of the
robot varied from 50Wh to 110Wh. With a mobility coefficient
of µ = 100 Joules/m, this battery range means the robot
can travel a distance between 1800m and 3960m. Fig. 3(a)
shows that with the increase of battery power, more packets are



(a) Tr = 150m. (b) Tr = 300m.

Fig. 4. Comparing Greedy and Random in large-scale RSNs.

collected for all the algorithms. Being an optimal solution, ILP
always collects the most packets. Greedy performs very close
to ILP, though, collecting the number of packets within 4.3%
to 14.2% of ILP. Besides, Greedy significantly outperforms
Random by collecting between 41.9% and to 80.1% more
packets. Fig. 3(b) shows the distances traveled by the robot,
showing that in all the test cases, battery power is a constraint
limiting the traveling distance of the robot in all the algorithms.
Table I shows the execution time of different algorithms w.r.t.
E . The execution time of both Greedy and Random is one
order of magnitude smaller than that of SCA, while Random
taking a bit less time.

Comparison in Large-scale RSNs. Fig. 4 compares the
Greedy and Random in large-scale RSNs of 10, 000m ×
10, 000m. Fig. 4(a) shows the data packets collected by both
algorithms when Tr is 150m. Greedy collects between upto
five times of more packets than Random, showing that Greedy
is more effective than Random. Fig. 4(b) increases the Tr to
300m and shows that Greedy outperforms Random by up to
four times. Both algorithms collect almost the same amounts
of packets with different Tr. This is because the networks are
very sparse, meaning not a lot of extra nodes are covered by
the increase in transmission range.

VI. CONCLUSIONS

We propose a new algorithmic framework called budget-
constrained covering salesman problem (i.e., BC-CSP). BC-
CSP is inspired by robotic sensor networks (RSNs), wherein
battery-constrained mobile robots, including drones and UAVs,
are dispatched to collect sensing data or maintain the network
in many sensing applications. We design algorithmic solutions
to solve the BC-CSP, including ILP, greedy, and random
heuristic algorithms. We show that greedy outperforms the
random while performing close with the ILP in terms of
collecting packets while both greedy and random are more
time-efficient than ILP. To the extent of our knowledge, our

TABLE I
EXECUTION TIME (MS) OF DIFFERENT ALGORITHMS.

Battery power E (Wh) Greedy Random ILP
50 36 23 256
70 61 18 461
90 86 28 769

110 111 37 906

work is the first to specifically address this challenge by
formulating and solving a new graph-theoretical problem viz.
BC-CSP. Due to this theoretical root, our research not only
works for RSNs but can potentially impact a wide range of
modern robotic systems where limited battery power severely
affects their operations.

REFERENCES

[1] Ibm cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer.
[2] Miller–tucker–zemlin (mtz) subtour elimination constraint. https://how-

to.aimms.com/Articles/332/332-Miller-Tucker-Zemlin-formulation.html.
[3] O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud. A uav-assisted

data collection for wireless sensor networks: Autonomous navigation
and scheduling. IEEE Access, 8:110446–110460, 2020.

[4] L. Chen, W. Wang, H. Huang, and S. Lin. On time-constrained data
harvesting in wireless sensor networks: Approximation algorithm design.
IEEE/ACM Transactions on Networking, 24(5):3123–3135, 2016.

[5] J. R. Current and D. A. Schilling. The covering salesman problem.
Transportation science, 23:208–213, 1989.

[6] P. Ghosh, A. Gasparri, J. Jin, and B. Krishnamachari. Robotic Wireless
Sensor Networks, page 545–595. Springer International Publishing,
2019.

[7] S. Guo, C. Wang, and Y. Yang. Joint mobile data gathering and
energy provisioning in wireless rechargeable sensor networks. IEEE
Transactions on Mobile Computing, 13(12):2836–2852, 2014.

[8] J. Hecht. Robots need better batteries. Nature, June 2023.
[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient

communication protocol for wireless microsensor networks. In Proc. of
HICSS 2000.

[10] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[11] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[12] F. M. Nizam Uddin Khan, M. G. Rasul, A. S. M. Sayem, and N. Mandal.
Maximizing energy density of lithium-ion batteries for electric vehicles:
A critical review. Energy Reports, 9:11–21, 2023.

[13] H. Li and A. V. Savkin. An algorithm for safe navigation of mobile
robots by a sensor network in dynamic cluttered industrial environments.
Robotics and Computer-Integrated Manufacturing, 54:65–82, 2018.

[14] K. Li, W. Ni, and F. Dressler. Continuous maneuver control and data
capture scheduling of autonomous drone in wireless sensor networks.
IEEE Transactions on Mobile Computing, 21(8):2732–2744, 2022.

[15] X. Liu, T. Qiu, X. Zhou, T. Wang, L. Yang, and V. Chang. Latency-
aware path planning for disconnected sensor networks with mobile sinks.
IEEE Transactions on Industrial Informatics, 16(1):350–361, 2020.

[16] M. Ma, Y. Yang, and M. Zhao. Tour planning for mobile data-
gathering mechanisms in wireless sensor networks. IEEE Transactions
on Vehicular Technology, 62(4):1472–1483, 2013.

[17] W. Mahjoub, C. Nakkach, and T. Ezzedine. Design of autonomous
wireless sensor network using mobile robots for intrusion detection and
border surveillance. In Proc. of International Wireless Communications
and Mobile Computing (IWCMC), 2023.

[18] P. Parwekar and R. Singhal. Robot assisted emergency intrusion
detection and avoidance with a wireless sensor network. In S. Sat-
apathy, S. K. Udgata, and B. N. Biswal, editors, Proceedings of the
International Conference on Frontiers of Intelligent Computing: Theory
and Applications (FICTA) 2013, 2014.

[19] H. Salarian, K. W. Chin, and F. Naghdy. An energy-efficient mobile-sink
path selection strategy for wireless sensor networks. IEEE Transactions
on Vehicular Technology, 63(5):2407–2419, 2014.

[20] A. Wichmann, T. Korkmaz, and A. S. Tosun. Robot control strategies for
task allocation with connectivity constraints in wireless sensor and robot
networks. IEEE Transactions on Mobile Computing, 17(6):1429–1441,
2018.

[21] X. Xiao and W. L. Whittaker. Energy considerations for wheeled mobile
robots operating on a single battery discharge. Technical Report CMU-
RI-TR-14-16, Pittsburgh, PA, August 2014.

[22] C. Yang, C. Gu, T. Zhang, and Y. Gao. Underwater robot sensing
technology: A survey. Fundamental Research, 1(3):337–345, 2021.


